diff options
Diffstat (limited to 'indra/newview/gltf/llgltfloader.cpp')
-rw-r--r-- | indra/newview/gltf/llgltfloader.cpp | 1710 |
1 files changed, 1710 insertions, 0 deletions
diff --git a/indra/newview/gltf/llgltfloader.cpp b/indra/newview/gltf/llgltfloader.cpp new file mode 100644 index 0000000000..7ae255e054 --- /dev/null +++ b/indra/newview/gltf/llgltfloader.cpp @@ -0,0 +1,1710 @@ +/** + * @file LLGLTFLoader.cpp + * @brief LLGLTFLoader class implementation + * + * $LicenseInfo:firstyear=2022&license=viewerlgpl$ + * Second Life Viewer Source Code + * Copyright (C) 2022, Linden Research, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; + * version 2.1 of the License only. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA + * $/LicenseInfo$ + */ + +#include "llgltfloader.h" +#include "meshoptimizer.h" +#include <glm/gtc/packing.hpp> + +// Import & define single-header gltf import/export lib +#define TINYGLTF_IMPLEMENTATION +#define TINYGLTF_USE_CPP14 // default is C++ 11 + +// tinygltf by default loads image files using STB +#define STB_IMAGE_IMPLEMENTATION +// to use our own image loading: +// 1. replace this definition with TINYGLTF_NO_STB_IMAGE +// 2. provide image loader callback with TinyGLTF::SetImageLoader(LoadimageDataFunction LoadImageData, void *user_data) + +// tinygltf saves image files using STB +#define STB_IMAGE_WRITE_IMPLEMENTATION +// similarly, can override with TINYGLTF_NO_STB_IMAGE_WRITE and TinyGLTF::SetImageWriter(fxn, data) + +// Additionally, disable inclusion of STB header files entirely with +// TINYGLTF_NO_INCLUDE_STB_IMAGE +// TINYGLTF_NO_INCLUDE_STB_IMAGE_WRITE +#include "tinygltf/tiny_gltf.h" + + +// TODO: includes inherited from dae loader. Validate / prune + +#include "llsdserialize.h" +#include "lljoint.h" +#include "llbase64.h" +#include "lldir.h" + +#include "llmatrix4a.h" + +#include <boost/regex.hpp> +#include <boost/algorithm/string/replace.hpp> +#include <fstream> + +static const std::string lod_suffix[LLModel::NUM_LODS] = +{ + "_LOD0", + "_LOD1", + "_LOD2", + "", + "_PHYS", +}; + +// Premade rotation matrix, GLTF is Y-up while SL is Z-up +static const glm::mat4 coord_system_rotation( + 1.f, 0.f, 0.f, 0.f, + 0.f, 0.f, 1.f, 0.f, + 0.f, -1.f, 0.f, 0.f, + 0.f, 0.f, 0.f, 1.f +); + + +static const glm::mat4 coord_system_rotationxy( + 0.f, 1.f, 0.f, 0.f, + -1.f, 0.f, 0.f, 0.f, + 0.f, 0.f, 1.f, 0.f, + 0.f, 0.f, 0.f, 1.f +); + +LLGLTFLoader::LLGLTFLoader(std::string filename, + S32 lod, + LLModelLoader::load_callback_t load_cb, + LLModelLoader::joint_lookup_func_t joint_lookup_func, + LLModelLoader::texture_load_func_t texture_load_func, + LLModelLoader::state_callback_t state_cb, + void * opaque_userdata, + JointTransformMap & jointTransformMap, + JointNameSet & jointsFromNodes, + std::map<std::string, std::string> &jointAliasMap, + U32 maxJointsPerMesh, + U32 modelLimit, + std::vector<LLJointData> viewer_skeleton) //, + //bool preprocess) + : LLModelLoader( filename, + lod, + load_cb, + joint_lookup_func, + texture_load_func, + state_cb, + opaque_userdata, + jointTransformMap, + jointsFromNodes, + jointAliasMap, + maxJointsPerMesh ) + , mGeneratedModelLimit(modelLimit) + , mViewerJointData(viewer_skeleton) +{ +} + +LLGLTFLoader::~LLGLTFLoader() {} + +bool LLGLTFLoader::OpenFile(const std::string &filename) +{ + tinygltf::TinyGLTF loader; + std::string filename_lc(filename); + LLStringUtil::toLower(filename_lc); + + mGltfLoaded = mGLTFAsset.load(filename, false); + + if (!mGltfLoaded) + { + notifyUnsupportedExtension(true); + + for (const auto& buffer : mGLTFAsset.mBuffers) + { + if (buffer.mByteLength > 0 && buffer.mData.empty()) + { + bool bin_file = buffer.mUri.ends_with(".bin"); + LLSD args; + args["Message"] = bin_file ? "ParsingErrorMissingBufferBin" : "ParsingErrorMissingBuffer"; + args["BUFFER_NAME"] = buffer.mName; + args["BUFFER_URI"] = buffer.mUri; + mWarningsArray.append(args); + } + } + setLoadState(ERROR_PARSING); + return false; + } + + notifyUnsupportedExtension(false); + + bool meshesLoaded = parseMeshes(); + + setLoadState(DONE); + + return meshesLoaded; +} + +void LLGLTFLoader::addModelToScene( + LLModel* pModel, + U32 submodel_limit, + const LLMatrix4& transformation, + const LLVolumeParams& volume_params, + const material_map& mats) +{ + U32 volume_faces = pModel->getNumVolumeFaces(); + + // Side-steps all manner of issues when splitting models + // and matching lower LOD materials to base models + // + pModel->sortVolumeFacesByMaterialName(); + + int submodelID = 0; + + // remove all faces that definitely won't fit into one model and submodel limit + U32 face_limit = (submodel_limit + 1) * LL_SCULPT_MESH_MAX_FACES; + if (face_limit < volume_faces) + { + pModel->setNumVolumeFaces(face_limit); + } + + LLVolume::face_list_t remainder; + std::vector<LLModel*> ready_models; + LLModel* current_model = pModel; + do + { + current_model->trimVolumeFacesToSize(LL_SCULPT_MESH_MAX_FACES, &remainder); + + volume_faces = static_cast<U32>(remainder.size()); + + // Don't add to scene yet because weights and materials aren't ready. + // Just save it + ready_models.push_back(current_model); + + // If we have left-over volume faces, create another model + // to absorb them. + if (volume_faces) + { + LLModel* next = new LLModel(volume_params, 0.f); + next->ClearFacesAndMaterials(); + next->mSubmodelID = ++submodelID; + next->mLabel = pModel->mLabel + (char)((int)'a' + next->mSubmodelID) + lod_suffix[mLod]; + next->getVolumeFaces() = remainder; + next->mNormalizedScale = current_model->mNormalizedScale; + next->mNormalizedTranslation = current_model->mNormalizedTranslation; + next->mSkinWeights = current_model->mSkinWeights; + next->mPosition = current_model->mPosition; + + const LLMeshSkinInfo& current_skin_info = current_model->mSkinInfo; + LLMeshSkinInfo& next_skin_info = next->mSkinInfo; + next_skin_info.mJointNames = current_skin_info.mJointNames; + next_skin_info.mJointNums = current_skin_info.mJointNums; + next_skin_info.mBindShapeMatrix = current_skin_info.mBindShapeMatrix; + next_skin_info.mInvBindMatrix = current_skin_info.mInvBindMatrix; + next_skin_info.mAlternateBindMatrix = current_skin_info.mAlternateBindMatrix; + next_skin_info.mPelvisOffset = current_skin_info.mPelvisOffset; + + + if (current_model->mMaterialList.size() > LL_SCULPT_MESH_MAX_FACES) + { + next->mMaterialList.assign(current_model->mMaterialList.begin() + LL_SCULPT_MESH_MAX_FACES, current_model->mMaterialList.end()); + current_model->mMaterialList.resize(LL_SCULPT_MESH_MAX_FACES); + } + + current_model = next; + } + + remainder.clear(); + + } while (volume_faces); + + for (auto model : ready_models) + { + // remove unused/redundant vertices + model->remapVolumeFaces(); + + mModelList.push_back(model); + + std::map<std::string, LLImportMaterial> materials; + for (U32 i = 0; i < (U32)model->mMaterialList.size(); ++i) + { + material_map::const_iterator found = mats.find(model->mMaterialList[i]); + if (found != mats.end()) + { + materials[model->mMaterialList[i]] = found->second; + } + else + { + materials[model->mMaterialList[i]] = LLImportMaterial(); + } + } + mScene[transformation].push_back(LLModelInstance(model, model->mLabel, transformation, materials)); + stretch_extents(model, transformation); + } +} + +bool LLGLTFLoader::parseMeshes() +{ + if (!mGltfLoaded) return false; + + // 2022-04 DJH Volume params from dae example. TODO understand PCODE + LLVolumeParams volume_params; + volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE); + + mTransform.setIdentity(); + + for (auto& node : mGLTFAsset.mNodes) + { + // Make node matrix valid for correct transformation + node.makeMatrixValid(); + } + + if (mGLTFAsset.mSkins.size() > 0) + { + checkForXYrotation(mGLTFAsset.mSkins[0]); + populateJointGroups(); + } + + // Populate the joints from skins first. + // There's not many skins - and you can pretty easily iterate through the nodes from that. + for (S32 i = 0; i < mGLTFAsset.mSkins.size(); i++) + { + populateJointsFromSkin(i); + } + + // Track how many times each mesh name has been used + std::map<std::string, S32> mesh_name_counts; + U32 submodel_limit = mGLTFAsset.mNodes.size() > 0 ? mGeneratedModelLimit / (U32)mGLTFAsset.mNodes.size() : 0; + + // Check if we have scenes defined + if (!mGLTFAsset.mScenes.empty()) + { + // Process the default scene (or first scene if no default) + S32 scene_idx = mGLTFAsset.mScene >= 0 ? mGLTFAsset.mScene : 0; + + if (scene_idx < mGLTFAsset.mScenes.size()) + { + const LL::GLTF::Scene& scene = mGLTFAsset.mScenes[scene_idx]; + + LL_INFOS("GLTF_IMPORT") << "Processing scene " << scene_idx << " with " << scene.mNodes.size() << " root nodes" << LL_ENDL; + + // Process all root nodes defined in the scene + for (S32 root_idx : scene.mNodes) + { + if (root_idx >= 0 && root_idx < static_cast<S32>(mGLTFAsset.mNodes.size())) + { + processNodeHierarchy(root_idx, mesh_name_counts, submodel_limit, volume_params); + } + } + } + } + else + { + LL_WARNS("GLTF_IMPORT") << "No scenes defined in GLTF file" << LL_ENDL; + + LLSD args; + args["Message"] = "NoScenesFound"; + mWarningsArray.append(args); + return false; + } + + // Check total model count against limit + U32 total_models = static_cast<U32>(mModelList.size()); + if (total_models > mGeneratedModelLimit) + { + LL_WARNS("GLTF_IMPORT") << "Model contains " << total_models + << " mesh parts, exceeding the limit of " << mGeneratedModelLimit << LL_ENDL; + + LLSD args; + args["Message"] = "TooManyMeshParts"; + args["PART_COUNT"] = static_cast<S32>(total_models); + args["LIMIT"] = static_cast<S32>(mGeneratedModelLimit); + mWarningsArray.append(args); + return false; + } + + return true; +} + +void LLGLTFLoader::processNodeHierarchy(S32 node_idx, std::map<std::string, S32>& mesh_name_counts, U32 submodel_limit, const LLVolumeParams& volume_params) +{ + if (node_idx < 0 || node_idx >= static_cast<S32>(mGLTFAsset.mNodes.size())) + return; + + auto& node = mGLTFAsset.mNodes[node_idx]; + + LL_INFOS("GLTF_IMPORT") << "Processing node " << node_idx << " (" << node.mName << ")" + << " - has mesh: " << (node.mMesh >= 0 ? "yes" : "no") + << " - children: " << node.mChildren.size() << LL_ENDL; + + // Process this node's mesh if it has one + if (node.mMesh >= 0 && node.mMesh < mGLTFAsset.mMeshes.size()) + { + LLMatrix4 transformation; + material_map mats; + + LLModel* pModel = new LLModel(volume_params, 0.f); + auto& mesh = mGLTFAsset.mMeshes[node.mMesh]; + + // Get base mesh name and track usage + std::string base_name = mesh.mName; + if (base_name.empty()) + { + base_name = "mesh_" + std::to_string(node.mMesh); + } + + S32 instance_count = mesh_name_counts[base_name]++; + + if (populateModelFromMesh(pModel, mesh, node, mats, instance_count) && + (LLModel::NO_ERRORS == pModel->getStatus()) && + validate_model(pModel)) + { + mTransform.setIdentity(); + transformation = mTransform; + + // adjust the transformation to compensate for mesh normalization + LLVector3 mesh_scale_vector; + LLVector3 mesh_translation_vector; + pModel->getNormalizedScaleTranslation(mesh_scale_vector, mesh_translation_vector); + + LLMatrix4 mesh_translation; + mesh_translation.setTranslation(mesh_translation_vector); + mesh_translation *= transformation; + transformation = mesh_translation; + + LLMatrix4 mesh_scale; + mesh_scale.initScale(mesh_scale_vector); + mesh_scale *= transformation; + transformation = mesh_scale; + + if (node.mSkin >= 0) + { + // "Bind Shape Matrix" is supposed to transform the geometry of the skinned mesh + // into the coordinate space of the joints. + // In GLTF, this matrix is omitted, and it is assumed that this transform is either + // premultiplied with the mesh data, or postmultiplied to the inverse bind matrices. + // + // TODO: There appears to be missing rotation when joints rotate the model + // or inverted bind matrices are missing inherited rotation + // (based of values the 'bento shoes' mesh might be missing 90 degrees horizontaly + // prior to skinning) + + pModel->mSkinInfo.mBindShapeMatrix.loadu(mesh_scale); + LL_INFOS("GLTF_DEBUG") << "Model: " << pModel->mLabel << " mBindShapeMatrix: " << pModel->mSkinInfo.mBindShapeMatrix << LL_ENDL; + } + + if (transformation.determinant() < 0) + { // negative scales are not supported + LL_INFOS("GLTF_IMPORT") << "Negative scale detected, unsupported post-normalization transform. domInstance_geometry: " + << pModel->mLabel << LL_ENDL; + LLSD args; + args["Message"] = "NegativeScaleNormTrans"; + args["LABEL"] = pModel->mLabel; + mWarningsArray.append(args); + } + + addModelToScene(pModel, submodel_limit, transformation, volume_params, mats); + mats.clear(); + } + else + { + setLoadState(ERROR_MODEL + pModel->getStatus()); + delete pModel; + return; + } + } + else if (node.mMesh >= 0) + { + // Log invalid mesh reference + LL_WARNS("GLTF_IMPORT") << "Node " << node_idx << " (" << node.mName + << ") references invalid mesh " << node.mMesh + << " (total meshes: " << mGLTFAsset.mMeshes.size() << ")" << LL_ENDL; + + LLSD args; + args["Message"] = "InvalidMeshReference"; + args["NODE_NAME"] = node.mName; + args["MESH_INDEX"] = node.mMesh; + args["TOTAL_MESHES"] = static_cast<S32>(mGLTFAsset.mMeshes.size()); + mWarningsArray.append(args); + } + + // Process all children recursively + for (S32 child_idx : node.mChildren) + { + processNodeHierarchy(child_idx, mesh_name_counts, submodel_limit, volume_params); + } +} + +void LLGLTFLoader::computeCombinedNodeTransform(const LL::GLTF::Asset& asset, S32 node_index, glm::mat4& combined_transform) const +{ + if (node_index < 0 || node_index >= static_cast<S32>(asset.mNodes.size())) + { + combined_transform = glm::mat4(1.0f); + return; + } + + const auto& node = asset.mNodes[node_index]; + + // Ensure the node's matrix is valid + const_cast<LL::GLTF::Node&>(node).makeMatrixValid(); + + // Start with this node's transform + combined_transform = node.mMatrix; + + // Find and apply parent transform if it exists + for (size_t i = 0; i < asset.mNodes.size(); ++i) + { + const auto& potential_parent = asset.mNodes[i]; + auto it = std::find(potential_parent.mChildren.begin(), potential_parent.mChildren.end(), node_index); + + if (it != potential_parent.mChildren.end()) + { + // Found parent - recursively get its combined transform and apply it + glm::mat4 parent_transform; + computeCombinedNodeTransform(asset, static_cast<S32>(i), parent_transform); + combined_transform = parent_transform * combined_transform; + return; // Early exit - a node can only have one parent + } + } +} + +bool LLGLTFLoader::addJointToModelSkin(LLMeshSkinInfo& skin_info, S32 gltf_skin_idx, size_t gltf_joint_idx) const +{ + const std::string& legal_name = mJointNames[gltf_skin_idx][gltf_joint_idx]; + if (legal_name.empty()) + { + llassert(false); // should have been stopped by gltf_joint_index_use[i] == -1 + return false; + } + skin_info.mJointNames.push_back(legal_name); + skin_info.mJointNums.push_back(-1); + + // In scope of same skin multiple meshes reuse same bind matrices + skin_info.mInvBindMatrix.push_back(mInverseBindMatrices[gltf_skin_idx][gltf_joint_idx]); + skin_info.mAlternateBindMatrix.push_back(mAlternateBindMatrices[gltf_skin_idx][gltf_joint_idx]); + + return true; +} + +bool LLGLTFLoader::populateModelFromMesh(LLModel* pModel, const LL::GLTF::Mesh& mesh, const LL::GLTF::Node& nodeno, material_map& mats, S32 instance_count) +{ + // Set the requested label for the floater display and uploading + pModel->mRequestedLabel = gDirUtilp->getBaseFileName(mFilename, true); + + // Create unique model name + std::string base_name = mesh.mName; + if (base_name.empty()) + { + S32 mesh_index = static_cast<S32>(&mesh - &mGLTFAsset.mMeshes[0]); + base_name = "mesh_" + std::to_string(mesh_index); + } + + LL_INFOS("GLTF_DEBUG") << "Processing model " << base_name << LL_ENDL; + + if (instance_count > 0) + { + pModel->mLabel = base_name + "_copy_" + std::to_string(instance_count); + } + else + { + pModel->mLabel = base_name; + } + + pModel->ClearFacesAndMaterials(); + + S32 skinIdx = nodeno.mSkin; + + // Compute final combined transform matrix (hierarchy + coordinate rotation) + S32 node_index = static_cast<S32>(&nodeno - &mGLTFAsset.mNodes[0]); + glm::mat4 hierarchy_transform; + computeCombinedNodeTransform(mGLTFAsset, node_index, hierarchy_transform); + + // Combine transforms: coordinate rotation applied to hierarchy transform + glm::mat4 final_transform = coord_system_rotation * hierarchy_transform; + if (mApplyXYRotation) + { + final_transform = coord_system_rotationxy * final_transform; + } + + // Check if we have a negative scale (flipped coordinate system) + bool hasNegativeScale = glm::determinant(final_transform) < 0.0f; + + // Pre-compute normal transform matrix (transpose of inverse of upper-left 3x3) + const glm::mat3 normal_transform = glm::transpose(glm::inverse(glm::mat3(final_transform))); + + // Mark unsuported joints with '-1' so that they won't get added into weights + // GLTF maps all joints onto all meshes. Gather use count per mesh to cut unused ones. + std::vector<S32> gltf_joint_index_use; + if (skinIdx >= 0 && mGLTFAsset.mSkins.size() > skinIdx) + { + LL::GLTF::Skin& gltf_skin = mGLTFAsset.mSkins[skinIdx]; + + size_t jointCnt = gltf_skin.mJoints.size(); + gltf_joint_index_use.resize(jointCnt); + + for (size_t i = 0; i < jointCnt; ++i) + { + if (mJointNames[i].empty()) + { + // This might need to hold a substitute index + gltf_joint_index_use[i] = -1; // mark as unsupported + } + } + } + + for (size_t prim_idx = 0; prim_idx < mesh.mPrimitives.size(); ++prim_idx) + { + const LL::GLTF::Primitive& prim = mesh.mPrimitives[prim_idx]; + + // So primitives already have all of the data we need for a given face in SL land. + // Primitives may only ever have a single material assigned to them - as the relation is 1:1 in terms of intended draw call + // count. Just go ahead and populate faces direct from the GLTF primitives here. -Geenz 2025-04-07 + LLVolumeFace face; + std::vector<GLTFVertex> vertices; + + LLImportMaterial impMat; + impMat.mDiffuseColor = LLColor4::white; // Default color + + // Process material if available + if (prim.mMaterial >= 0 && prim.mMaterial < mGLTFAsset.mMaterials.size()) + { + LL::GLTF::Material* material = &mGLTFAsset.mMaterials[prim.mMaterial]; + + // Set diffuse color from base color factor + impMat.mDiffuseColor = LLColor4( + material->mPbrMetallicRoughness.mBaseColorFactor[0], + material->mPbrMetallicRoughness.mBaseColorFactor[1], + material->mPbrMetallicRoughness.mBaseColorFactor[2], + material->mPbrMetallicRoughness.mBaseColorFactor[3] + ); + + // Process base color texture if it exists + if (material->mPbrMetallicRoughness.mBaseColorTexture.mIndex >= 0) + { + S32 texIndex = material->mPbrMetallicRoughness.mBaseColorTexture.mIndex; + if (texIndex < mGLTFAsset.mTextures.size()) + { + S32 sourceIndex = mGLTFAsset.mTextures[texIndex].mSource; + if (sourceIndex >= 0 && sourceIndex < mGLTFAsset.mImages.size()) + { + LL::GLTF::Image& image = mGLTFAsset.mImages[sourceIndex]; + + // Use URI as texture file name + if (!image.mUri.empty()) + { + // URI might be a remote URL or a local path + std::string filename = image.mUri; + + // Extract just the filename from the URI + size_t pos = filename.find_last_of("/\\"); + if (pos != std::string::npos) + { + filename = filename.substr(pos + 1); + } + + // Store the texture filename + impMat.mDiffuseMapFilename = filename; + impMat.mDiffuseMapLabel = material->mName.empty() ? filename : material->mName; + + LL_INFOS("GLTF_IMPORT") << "Found texture: " << impMat.mDiffuseMapFilename + << " for material: " << material->mName << LL_ENDL; + + LLSD args; + args["Message"] = "TextureFound"; + args["TEXTURE_NAME"] = impMat.mDiffuseMapFilename; + args["MATERIAL_NAME"] = material->mName; + mWarningsArray.append(args); + + // If the image has a texture loaded already, use it + if (image.mTexture.notNull()) + { + impMat.setDiffuseMap(image.mTexture->getID()); + LL_INFOS("GLTF_IMPORT") << "Using existing texture ID: " << image.mTexture->getID().asString() << LL_ENDL; + } + else + { + // Texture will be loaded later through the callback system + LL_INFOS("GLTF_IMPORT") << "Texture needs loading: " << impMat.mDiffuseMapFilename << LL_ENDL; + } + } + else if (image.mTexture.notNull()) + { + // No URI but we have a texture, use it directly + impMat.setDiffuseMap(image.mTexture->getID()); + LL_INFOS("GLTF_IMPORT") << "Using existing texture ID without URI: " << image.mTexture->getID().asString() << LL_ENDL; + } + else if (image.mBufferView >= 0) + { + // For embedded textures (no URI but has buffer data) + std::string temp_filename = extractTextureToTempFile(texIndex, "base_color"); + if (!temp_filename.empty()) + { + impMat.mDiffuseMapFilename = temp_filename; + impMat.mDiffuseMapLabel = material->mName.empty() ? temp_filename : material->mName; + } + } + } + } + } + } + + if (prim.getIndexCount() % 3 != 0) + { + LL_WARNS("GLTF_IMPORT") << "Mesh '" << mesh.mName << "' primitive " << prim_idx + << ": Invalid index count " << prim.getIndexCount() + << " (not divisible by 3). GLTF files must contain triangulated geometry." << LL_ENDL; + + LLSD args; + args["Message"] = "InvalidGeometryNonTriangulated"; + args["MESH_NAME"] = mesh.mName; + args["PRIMITIVE_INDEX"] = static_cast<S32>(prim_idx); + args["INDEX_COUNT"] = static_cast<S32>(prim.getIndexCount()); + mWarningsArray.append(args); + return false; // Skip this primitive + } + + // Apply the global scale and center offset to all vertices + for (U32 i = 0; i < prim.getVertexCount(); i++) + { + // Use pre-computed final_transform + glm::vec4 pos(prim.mPositions[i][0], prim.mPositions[i][1], prim.mPositions[i][2], 1.0f); + glm::vec4 transformed_pos = final_transform * pos; + + GLTFVertex vert; + vert.position = glm::vec3(transformed_pos); + + if (!prim.mNormals.empty()) + { + // Use pre-computed normal_transform + glm::vec3 normal_vec(prim.mNormals[i][0], prim.mNormals[i][1], prim.mNormals[i][2]); + vert.normal = glm::normalize(normal_transform * normal_vec); + } + else + { + // Use default normal (pointing up in model space) + vert.normal = glm::normalize(normal_transform * glm::vec3(0.0f, 0.0f, 1.0f)); + LL_DEBUGS("GLTF_IMPORT") << "No normals found for primitive, using default normal." << LL_ENDL; + } + + vert.uv0 = glm::vec2(prim.mTexCoords0[i][0], -prim.mTexCoords0[i][1]); + + if (skinIdx >= 0) + { + vert.weights = glm::vec4(prim.mWeights[i]); + + auto accessorIdx = prim.mAttributes.at("JOINTS_0"); + LL::GLTF::Accessor::ComponentType componentType = LL::GLTF::Accessor::ComponentType::UNSIGNED_BYTE; + if (accessorIdx >= 0) + { + auto accessor = mGLTFAsset.mAccessors[accessorIdx]; + componentType = accessor.mComponentType; + } + + // The GLTF spec allows for either an unsigned byte for joint indices, or an unsigned short. + // Detect and unpack accordingly. + if (componentType == LL::GLTF::Accessor::ComponentType::UNSIGNED_BYTE) + { + auto ujoint = glm::unpackUint4x8((U32)(prim.mJoints[i] & 0xFFFFFFFF)); + vert.joints = glm::u16vec4(ujoint.x, ujoint.y, ujoint.z, ujoint.w); + } + else if (componentType == LL::GLTF::Accessor::ComponentType::UNSIGNED_SHORT) + { + vert.joints = glm::unpackUint4x16(prim.mJoints[i]); + } + else + { + vert.joints = glm::zero<glm::u16vec4>(); + vert.weights = glm::zero<glm::vec4>(); + } + } + vertices.push_back(vert); + } + + // Check for empty vertex array before processing + if (vertices.empty()) + { + LL_WARNS("GLTF_IMPORT") << "Empty vertex array for primitive " << prim_idx << " in model " << mesh.mName << LL_ENDL; + LLSD args; + args["Message"] = "EmptyVertexArray"; + args["MESH_NAME"] = mesh.mName; + args["PRIMITIVE_INDEX"] = static_cast<S32>(prim_idx); + args["INDEX_COUNT"] = static_cast<S32>(prim.getIndexCount()); + mWarningsArray.append(args); + return false; // Skip this primitive + } + + std::vector<LLVolumeFace::VertexData> faceVertices; + glm::vec3 min = glm::vec3(FLT_MAX); + glm::vec3 max = glm::vec3(-FLT_MAX); + + for (U32 i = 0; i < vertices.size(); i++) + { + LLVolumeFace::VertexData vert; + + // Update min/max bounds + if (i == 0) + { + min = max = vertices[i].position; + } + else + { + min.x = std::min(min.x, vertices[i].position.x); + min.y = std::min(min.y, vertices[i].position.y); + min.z = std::min(min.z, vertices[i].position.z); + max.x = std::max(max.x, vertices[i].position.x); + max.y = std::max(max.y, vertices[i].position.y); + max.z = std::max(max.z, vertices[i].position.z); + } + + LLVector4a position = LLVector4a(vertices[i].position.x, vertices[i].position.y, vertices[i].position.z); + LLVector4a normal = LLVector4a(vertices[i].normal.x, vertices[i].normal.y, vertices[i].normal.z); + vert.setPosition(position); + vert.setNormal(normal); + vert.mTexCoord = LLVector2(vertices[i].uv0.x, vertices[i].uv0.y); + faceVertices.push_back(vert); + + if (skinIdx >= 0) + { + // create list of weights that influence this vertex + LLModel::weight_list weight_list; + + // Drop joints that viewer doesn't support (negative in gltf_joint_index_use_count) + // don't reindex them yet, more indexes will be removed + // Also drop joints that have no weight. GLTF stores 4 per vertex, so there might be + // 'empty' ones + if (gltf_joint_index_use[vertices[i].joints.x] >= 0 + && vertices[i].weights.x > 0.f) + { + weight_list.push_back(LLModel::JointWeight(vertices[i].joints.x, vertices[i].weights.x)); + gltf_joint_index_use[vertices[i].joints.x]++; + } + if (gltf_joint_index_use[vertices[i].joints.y] >= 0 + && vertices[i].weights.y > 0.f) + { + weight_list.push_back(LLModel::JointWeight(vertices[i].joints.y, vertices[i].weights.y)); + gltf_joint_index_use[vertices[i].joints.y]++; + } + if (gltf_joint_index_use[vertices[i].joints.z] >= 0 + && vertices[i].weights.z > 0.f) + { + weight_list.push_back(LLModel::JointWeight(vertices[i].joints.z, vertices[i].weights.z)); + gltf_joint_index_use[vertices[i].joints.z]++; + } + if (gltf_joint_index_use[vertices[i].joints.w] >= 0 + && vertices[i].weights.w > 0.f) + { + weight_list.push_back(LLModel::JointWeight(vertices[i].joints.w, vertices[i].weights.w)); + gltf_joint_index_use[vertices[i].joints.w]++; + } + + std::sort(weight_list.begin(), weight_list.end(), LLModel::CompareWeightGreater()); + + std::vector<LLModel::JointWeight> wght; + F32 total = 0.f; + + for (U32 j = 0; j < llmin((U32)4, (U32)weight_list.size()); ++j) + { + // take up to 4 most significant weights + // Ported from the DAE loader - however, GLTF right now only supports up to four weights per vertex. + wght.push_back(weight_list[j]); + total += weight_list[j].mWeight; + } + + if (total != 0.f) + { + F32 scale = 1.f / total; + if (scale != 1.f) + { // normalize weights + for (U32 j = 0; j < wght.size(); ++j) + { + wght[j].mWeight *= scale; + } + } + } + + if (wght.size() > 0) + { + pModel->mSkinWeights[LLVector3(vertices[i].position)] = wght; + } + } + } + + // Create a unique material name for this primitive + std::string materialName; + if (prim.mMaterial >= 0 && prim.mMaterial < mGLTFAsset.mMaterials.size()) + { + LL::GLTF::Material* material = &mGLTFAsset.mMaterials[prim.mMaterial]; + materialName = material->mName; + + if (materialName.empty()) + { + materialName = "mat" + std::to_string(prim.mMaterial); + } + } + else + { + materialName = "mat_default" + std::to_string(pModel->getNumVolumeFaces() - 1); + } + mats[materialName] = impMat; + + // Indices handling + if (faceVertices.size() >= USHRT_MAX) + { + // Will have to remap 32 bit indices into 16 bit indices + // For the sake of simplicity build vector of 32 bit indices first + std::vector<U32> indices_32; + for (U32 i = 0; i < prim.getIndexCount(); i += 3) + { + // When processing indices, flip winding order if needed + if (hasNegativeScale) + { + // Flip winding order for negative scale + indices_32.push_back(prim.mIndexArray[i]); + indices_32.push_back(prim.mIndexArray[i + 2]); // Swap these two + indices_32.push_back(prim.mIndexArray[i + 1]); + } + else + { + indices_32.push_back(prim.mIndexArray[i]); + indices_32.push_back(prim.mIndexArray[i + 1]); + indices_32.push_back(prim.mIndexArray[i + 2]); + } + } + + // remap 32 bit into multiple 16 bit ones + std::vector<U16> indices_16; + std::vector<S64> vertices_remap; // should it be a point map? + vertices_remap.resize(faceVertices.size(), -1); + std::vector<LLVolumeFace::VertexData> face_verts; + min = glm::vec3(FLT_MAX); + max = glm::vec3(-FLT_MAX); + for (size_t idx = 0; idx < indices_32.size(); idx++) + { + size_t vert_index = indices_32[idx]; + if (vertices_remap[vert_index] == -1) + { + // First encounter, add it + size_t new_vert_idx = face_verts.size(); + vertices_remap[vert_index] = (S64)new_vert_idx; + face_verts.push_back(faceVertices[vert_index]); + vert_index = new_vert_idx; + + // Update min/max bounds + const LLVector4a& vec = face_verts[new_vert_idx].getPosition(); + if (new_vert_idx == 0) + { + min.x = vec[0]; + min.y = vec[1]; + min.z = vec[2]; + max = min; + } + else + { + min.x = std::min(min.x, vec[0]); + min.y = std::min(min.y, vec[1]); + min.z = std::min(min.z, vec[2]); + max.x = std::max(max.x, vec[0]); + max.y = std::max(max.y, vec[1]); + max.z = std::max(max.z, vec[2]); + } + } + else + { + // already in vector, get position + vert_index = (size_t)vertices_remap[vert_index]; + } + indices_16.push_back((U16)vert_index); + + if (indices_16.size() % 3 == 0 && face_verts.size() >= 65532) + { + LLVolumeFace face; + face.fillFromLegacyData(face_verts, indices_16); + face.mExtents[0] = LLVector4a(min.x, min.y, min.z, 0); + face.mExtents[1] = LLVector4a(max.x, max.y, max.z, 0); + pModel->getVolumeFaces().push_back(face); + pModel->getMaterialList().push_back(materialName); + + std::fill(vertices_remap.begin(), vertices_remap.end(), -1); + indices_16.clear(); + face_verts.clear(); + + min = glm::vec3(FLT_MAX); + max = glm::vec3(-FLT_MAX); + } + } + if (indices_16.size() > 0 && face_verts.size() > 0) + { + LLVolumeFace face; + face.fillFromLegacyData(face_verts, indices_16); + face.mExtents[0] = LLVector4a(min.x, min.y, min.z, 0); + face.mExtents[1] = LLVector4a(max.x, max.y, max.z, 0); + pModel->getVolumeFaces().push_back(face); + pModel->getMaterialList().push_back(materialName); + } + } + else + { + // can use indices directly + std::vector<U16> indices; + for (U32 i = 0; i < prim.getIndexCount(); i += 3) + { + // When processing indices, flip winding order if needed + if (hasNegativeScale) + { + // Flip winding order for negative scale + indices.push_back(prim.mIndexArray[i]); + indices.push_back(prim.mIndexArray[i + 2]); // Swap these two + indices.push_back(prim.mIndexArray[i + 1]); + } + else + { + indices.push_back(prim.mIndexArray[i]); + indices.push_back(prim.mIndexArray[i + 1]); + indices.push_back(prim.mIndexArray[i + 2]); + } + } + + face.fillFromLegacyData(faceVertices, indices); + face.mExtents[0] = LLVector4a(min.x, min.y, min.z, 0); + face.mExtents[1] = LLVector4a(max.x, max.y, max.z, 0); + + pModel->getVolumeFaces().push_back(face); + pModel->getMaterialList().push_back(materialName); + } + } + + // Call normalizeVolumeFacesAndWeights to compute proper extents + pModel->normalizeVolumeFacesAndWeights(); + + // Fill joint names, bind matrices and remap weight indices + if (skinIdx >= 0) + { + LL::GLTF::Skin& gltf_skin = mGLTFAsset.mSkins[skinIdx]; + LLMeshSkinInfo& skin_info = pModel->mSkinInfo; + S32 valid_joints_count = mValidJointsCount[skinIdx]; + + S32 replacement_index = 0; + std::vector<S32> gltfindex_to_joitindex_map; + size_t jointCnt = gltf_skin.mJoints.size(); + gltfindex_to_joitindex_map.resize(jointCnt); + + if (valid_joints_count > LL_MAX_JOINTS_PER_MESH_OBJECT) + { + std::map<std::string, S32> goup_use_count; + // Assume that 'Torso' group is always in use since that's what everything else is attached to + goup_use_count["Torso"] = 1; + // Note that Collisions and Extra groups are all over the place, might want to include them from the start + // or add individual when parents are added + + // Check which groups are in use + for (size_t i = 0; i < jointCnt; ++i) + { + std::string& joint_name = mJointNames[skinIdx][i]; + if (!joint_name.empty()) + { + if (gltf_joint_index_use[i] > 0) + { + const JointGroups &group = mJointGroups[joint_name]; + // Joint in use, increment it's groups + goup_use_count[group.mGroup]++; + goup_use_count[group.mParentGroup]++; + } + } + } + + // 1. add joints that are in use directly + for (size_t i = 0; i < jointCnt; ++i) + { + // Process joint name and idnex + S32 joint = gltf_skin.mJoints[i]; + if (gltf_joint_index_use[i] <= 0) + { + // unsupported (-1) joint, drop it + // unused (0) joint, drop it + continue; + } + + if (addJointToModelSkin(skin_info, skinIdx, i)) + { + gltfindex_to_joitindex_map[i] = replacement_index++; + } + } + + // 2. add joints from groups that this model's joints belong to + // It's perfectly valid to have more joints than is in use + // Ex: sandals that make your legs digitigrade despite not skining to + // knees or the like. + // Todo: sort and add by usecount + for (size_t i = 0; i < jointCnt; ++i) + { + S32 joint = gltf_skin.mJoints[i]; + if (gltf_joint_index_use[i] != 0) + { + // this step needs only joints that have zero uses + continue; + } + if (skin_info.mInvBindMatrix.size() > LL_MAX_JOINTS_PER_MESH_OBJECT) + { + break; + } + const std::string& legal_name = mJointNames[skinIdx][i]; + std::string group_name = mJointGroups[legal_name].mGroup; + if (goup_use_count[group_name] > 0) + { + if (addJointToModelSkin(skin_info, skinIdx, i)) + { + gltfindex_to_joitindex_map[i] = replacement_index++; + } + } + } + } + else + { + // Less than 110, just add every valid joint + for (size_t i = 0; i < jointCnt; ++i) + { + // Process joint name and idnex + S32 joint = gltf_skin.mJoints[i]; + if (gltf_joint_index_use[i] < 0) + { + // unsupported (-1) joint, drop it + continue; + } + + if (addJointToModelSkin(skin_info, skinIdx, i)) + { + gltfindex_to_joitindex_map[i] = replacement_index++; + } + } + } + + if (skin_info.mInvBindMatrix.size() > LL_MAX_JOINTS_PER_MESH_OBJECT) + { + LL_WARNS("GLTF_IMPORT") << "Too many jonts in " << pModel->mLabel + << " Count: " << (S32)skin_info.mInvBindMatrix.size() + << " Limit:" << (S32)LL_MAX_JOINTS_PER_MESH_OBJECT << LL_ENDL; + LLSD args; + args["Message"] = "ModelTooManyJoint"; + args["MODEL_NAME"] = pModel->mLabel; + args["JOINT_COUNT"] = (S32)skin_info.mInvBindMatrix.size(); + args["MAX"] = (S32)LL_MAX_JOINTS_PER_MESH_OBJECT; + mWarningsArray.append(args); + } + + // Remap indices for pModel->mSkinWeights + for (auto& weights : pModel->mSkinWeights) + { + for (auto& weight : weights.second) + { + weight.mJointIdx = gltfindex_to_joitindex_map[weight.mJointIdx]; + } + } + } + + return true; +} + +void LLGLTFLoader::populateJointsFromSkin(S32 skin_idx) +{ + const LL::GLTF::Skin& skin = mGLTFAsset.mSkins[skin_idx]; + + LL_INFOS("GLTF_DEBUG") << "populateJointFromSkin: Processing skin " << skin_idx << " with " << skin.mJoints.size() << " joints" << LL_ENDL; + + if (skin.mInverseBindMatrices > 0 && skin.mJoints.size() != skin.mInverseBindMatricesData.size()) + { + LL_INFOS("GLTF_IMPORT") << "Bind matrices count mismatch joints count" << LL_ENDL; + LLSD args; + args["Message"] = "InvBindCountMismatch"; + mWarningsArray.append(args); + } + + S32 joint_count = (S32)skin.mJoints.size(); + S32 inverse_count = (S32)skin.mInverseBindMatricesData.size(); + if (mInverseBindMatrices.size() <= skin_idx) + { + mInverseBindMatrices.resize(skin_idx + 1); + mAlternateBindMatrices.resize(skin_idx + 1); + mJointNames.resize(skin_idx + 1); + mValidJointsCount.resize(skin_idx + 1, 0); + } + + // fill up joints related data + joints_data_map_t joints_data; + joints_name_to_node_map_t names_to_nodes; + for (S32 i = 0; i < joint_count; i++) + { + S32 joint = skin.mJoints[i]; + LL::GLTF::Node jointNode = mGLTFAsset.mNodes[joint]; + JointNodeData& data = joints_data[joint]; + data.mNodeIdx = joint; + data.mJointListIdx = i; + data.mGltfRestMatrix = buildGltfRestMatrix(joint, skin); + data.mGltfMatrix = jointNode.mMatrix; + data.mOverrideMatrix = glm::mat4(1.f); + + if (mJointMap.find(jointNode.mName) != mJointMap.end()) + { + data.mName = mJointMap[jointNode.mName]; + data.mIsValidViewerJoint = true; + mValidJointsCount[skin_idx]++; + } + else + { + data.mName = jointNode.mName; + data.mIsValidViewerJoint = false; + } + names_to_nodes[data.mName] = joint; + + for (S32 child : jointNode.mChildren) + { + JointNodeData& child_data = joints_data[child]; + child_data.mParentNodeIdx = joint; + child_data.mIsParentValidViewerJoint = data.mIsValidViewerJoint; + } + } + + if (mValidJointsCount[skin_idx] > LL_MAX_JOINTS_PER_MESH_OBJECT) + { + LL_WARNS("GLTF_IMPORT") << "Too many jonts, will strip unused joints" + << " Count: " << mValidJointsCount[skin_idx] + << " Limit:" << (S32)LL_MAX_JOINTS_PER_MESH_OBJECT << LL_ENDL; + + LLSD args; + args["Message"] = "SkinJointsOverLimit"; + args["SKIN_INDEX"] = (S32)skin_idx; + args["JOINT_COUNT"] = mValidJointsCount[skin_idx]; + args["MAX"] = (S32)LL_MAX_JOINTS_PER_MESH_OBJECT; + mWarningsArray.append(args); + } + + // Go over viewer joints and build overrides + glm::mat4 ident(1.0); + for (auto &viewer_data : mViewerJointData) + { + buildOverrideMatrix(viewer_data, joints_data, names_to_nodes, ident, ident); + } + + for (S32 i = 0; i < joint_count; i++) + { + S32 joint = skin.mJoints[i]; + LL::GLTF::Node jointNode = mGLTFAsset.mNodes[joint]; + std::string legal_name(jointNode.mName); + bool legal_joint = false; + if (mJointMap.find(legal_name) != mJointMap.end()) + { + legal_name = mJointMap[legal_name]; + legal_joint = true; + mJointNames[skin_idx].push_back(legal_name); + } + else + { + mJointNames[skin_idx].emplace_back(); + } + + // Compute bind matrices + + if (!legal_joint) + { + // Add placeholder to not break index. + // Not going to be used by viewer, will be stripped from skin_info. + LLMatrix4 gltf_transform; + gltf_transform.setIdentity(); + mInverseBindMatrices[skin_idx].push_back(LLMatrix4a(gltf_transform)); + } + else if (inverse_count > i) + { + // Transalte existing bind matrix to viewer's skeleton + // todo: probably should be 'to viewer's overriden skeleton' + glm::mat4 original_bind_matrix = glm::inverse(skin.mInverseBindMatricesData[i]); + glm::mat4 rotated_original = coord_system_rotation * original_bind_matrix; + glm::mat4 skeleton_transform = computeGltfToViewerSkeletonTransform(joints_data, joint, legal_name); + glm::mat4 tranlated_original = skeleton_transform * rotated_original; + glm::mat4 final_inverse_bind_matrix = glm::inverse(tranlated_original); + + LLMatrix4 gltf_transform = LLMatrix4(glm::value_ptr(final_inverse_bind_matrix)); + LL_INFOS("GLTF_DEBUG") << "mInvBindMatrix name: " << legal_name << " Translated val: " << gltf_transform << LL_ENDL; + mInverseBindMatrices[skin_idx].push_back(LLMatrix4a(gltf_transform)); + } + else + { + // If bind matrices aren't present (they are optional in gltf), + // assume an identy matrix + // todo: find a model with this, might need to use rotated matrix + glm::mat4 inv_bind(1.0f); + glm::mat4 skeleton_transform = computeGltfToViewerSkeletonTransform(joints_data, joint, legal_name); + inv_bind = glm::inverse(skeleton_transform * inv_bind); + + LLMatrix4 gltf_transform = LLMatrix4(glm::value_ptr(inv_bind)); + LL_INFOS("GLTF_DEBUG") << "mInvBindMatrix name: " << legal_name << " Generated val: " << gltf_transform << LL_ENDL; + mInverseBindMatrices[skin_idx].push_back(LLMatrix4a(gltf_transform)); + } + + // Compute Alternative matrices also known as overrides + LLMatrix4 original_joint_transform(glm::value_ptr(joints_data[joint].mOverrideMatrix)); + + // Viewer seems to care only about translation part, + // but for parity with collada taking original value + LLMatrix4 newInverse = LLMatrix4(mInverseBindMatrices[skin_idx].back().getF32ptr()); + newInverse.setTranslation(original_joint_transform.getTranslation()); + + LL_INFOS("GLTF_DEBUG") << "mAlternateBindMatrix name: " << legal_name << " val: " << newInverse << LL_ENDL; + mAlternateBindMatrices[skin_idx].push_back(LLMatrix4a(newInverse)); + + if (legal_joint) + { + // Might be needed for uploader UI to correctly identify overriden joints + // but going to be incorrect if multiple skins are present + mJointList[legal_name] = newInverse; + mJointsFromNode.push_front(legal_name); + } + } +} + +void LLGLTFLoader::populateJointGroups() +{ + std::string parent; + for (auto& viewer_data : mViewerJointData) + { + buildJointGroup(viewer_data, parent); + } +} + + +S32 LLGLTFLoader::findClosestValidJoint(S32 source_joint, const LL::GLTF::Skin& gltf_skin) const +{ + S32 source_joint_node = gltf_skin.mJoints[source_joint]; + S32 root_node = source_joint_node; + S32 found_node = source_joint_node; + S32 size = (S32)gltf_skin.mJoints.size(); + do + { + root_node = found_node; + for (S32 i = 0; i < size; i++) + { + S32 joint = gltf_skin.mJoints[i]; + const LL::GLTF::Node& jointNode = mGLTFAsset.mNodes[joint]; + std::vector<S32>::const_iterator it = std::find(jointNode.mChildren.begin(), jointNode.mChildren.end(), root_node); + if (it != jointNode.mChildren.end()) + { + // Found node's parent + found_node = joint; + if (mJointMap.find(jointNode.mName) != mJointMap.end()) + { + return i; + } + break; + } + } + } while (root_node != found_node); + + return -1; +} + +S32 LLGLTFLoader::findValidRootJointNode(S32 source_joint_node, const LL::GLTF::Skin& gltf_skin) const +{ + S32 root_node = 0; + S32 found_node = source_joint_node; + S32 size = (S32)gltf_skin.mJoints.size(); + do + { + root_node = found_node; + for (S32 i = 0; i < size; i++) + { + S32 joint = gltf_skin.mJoints[i]; + const LL::GLTF::Node& jointNode = mGLTFAsset.mNodes[joint]; + + if (mJointMap.find(jointNode.mName) != mJointMap.end()) + { + std::vector<S32>::const_iterator it = std::find(jointNode.mChildren.begin(), jointNode.mChildren.end(), root_node); + if (it != jointNode.mChildren.end()) + { + // Found node's parent + found_node = joint; + break; + } + } + } + } while (root_node != found_node); + + return root_node; +} + +S32 LLGLTFLoader::findGLTFRootJointNode(const LL::GLTF::Skin& gltf_skin) const +{ + S32 root_node = 0; + S32 found_node = 0; + S32 size = (S32)gltf_skin.mJoints.size(); + do + { + root_node = found_node; + for (S32 i = 0; i < size; i++) + { + S32 joint = gltf_skin.mJoints[i]; + const LL::GLTF::Node& jointNode = mGLTFAsset.mNodes[joint]; + std::vector<S32>::const_iterator it = std::find(jointNode.mChildren.begin(), jointNode.mChildren.end(), root_node); + if (it != jointNode.mChildren.end()) + { + // Found node's parent + found_node = joint; + break; + } + } + } while (root_node != found_node); + + LL_INFOS("GLTF_DEBUG") << "mJointList name: "; + const LL::GLTF::Node& jointNode = mGLTFAsset.mNodes[root_node]; + LL_CONT << jointNode.mName << " index: " << root_node << LL_ENDL; + return root_node; +} + +S32 LLGLTFLoader::findParentNode(S32 node) const +{ + S32 size = (S32)mGLTFAsset.mNodes.size(); + for (S32 i = 0; i < size; i++) + { + const LL::GLTF::Node& jointNode = mGLTFAsset.mNodes[i]; + std::vector<S32>::const_iterator it = std::find(jointNode.mChildren.begin(), jointNode.mChildren.end(), node); + if (it != jointNode.mChildren.end()) + { + return i; + } + } + return -1; +} + +void LLGLTFLoader::buildJointGroup(LLJointData& viewer_data, const std::string &parent_group) +{ + JointGroups& jount_group_data = mJointGroups[viewer_data.mName]; + jount_group_data.mGroup = viewer_data.mGroup; + jount_group_data.mParentGroup = parent_group; + + for (LLJointData& child_data : viewer_data.mChildren) + { + buildJointGroup(child_data, viewer_data.mGroup); + } +} + +void LLGLTFLoader::buildOverrideMatrix(LLJointData& viewer_data, joints_data_map_t &gltf_nodes, joints_name_to_node_map_t &names_to_nodes, glm::mat4& parent_rest, glm::mat4& parent_support_rest) const +{ + glm::mat4 new_lefover(1.f); + glm::mat4 rest(1.f); + joints_name_to_node_map_t::iterator found_node = names_to_nodes.find(viewer_data.mName); + if (found_node != names_to_nodes.end()) + { + S32 gltf_node_idx = found_node->second; + JointNodeData& node = gltf_nodes[gltf_node_idx]; + node.mIsOverrideValid = true; + node.mViewerRestMatrix = viewer_data.mRestMatrix; + + glm::mat4 gltf_joint_rest_pose = coord_system_rotation * node.mGltfRestMatrix; + if (mApplyXYRotation) + { + gltf_joint_rest_pose = coord_system_rotationxy * gltf_joint_rest_pose; + } + + glm::mat4 translated_joint; + // Example: + // Viewer has pelvis->spine1->spine2->torso. + // gltf example model has pelvis->torso + // By doing glm::inverse(transalted_rest_spine2) * gltf_rest_torso + // We get what torso would have looked like if gltf had a spine2 + if (viewer_data.mIsJoint) + { + translated_joint = glm::inverse(parent_rest) * gltf_joint_rest_pose; + } + else + { + translated_joint = glm::inverse(parent_support_rest) * gltf_joint_rest_pose; + } + + glm::vec3 translation_override; + glm::vec3 skew; + glm::vec3 scale; + glm::vec4 perspective; + glm::quat rotation; + glm::decompose(translated_joint, scale, rotation, translation_override, skew, perspective); + + node.mOverrideMatrix = glm::recompose(glm::vec3(1, 1, 1), glm::identity<glm::quat>(), translation_override, glm::vec3(0, 0, 0), glm::vec4(0, 0, 0, 1)); + + glm::mat4 override_joint = node.mOverrideMatrix; + override_joint = glm::scale(override_joint, viewer_data.mScale); + + rest = parent_rest * override_joint; + node.mOverrideRestMatrix = rest; + } + else + { + // No override for this joint + rest = parent_rest * viewer_data.mJointMatrix; + } + + glm::mat4 support_rest(1.f); + if (viewer_data.mSupport == LLJointData::SUPPORT_BASE) + { + support_rest = rest; + } + else + { + support_rest = parent_support_rest; + } + + for (LLJointData& child_data : viewer_data.mChildren) + { + buildOverrideMatrix(child_data, gltf_nodes, names_to_nodes, rest, support_rest); + } +} + +glm::mat4 LLGLTFLoader::buildGltfRestMatrix(S32 joint_node_index, const LL::GLTF::Skin& gltf_skin) const +{ + // This is inefficient since we are recalculating some joints multiple times over + // Todo: cache it? + + if (joint_node_index < 0 || joint_node_index >= static_cast<S32>(mGLTFAsset.mNodes.size())) + { + return glm::mat4(1.0f); + } + + const auto& node = mGLTFAsset.mNodes[joint_node_index]; + + // Find and apply parent transform if it exists + for (size_t i = 0; i < mGLTFAsset.mNodes.size(); ++i) + { + const auto& potential_parent = mGLTFAsset.mNodes[i]; + auto it = std::find(potential_parent.mChildren.begin(), potential_parent.mChildren.end(), joint_node_index); + + if (it != potential_parent.mChildren.end()) + { + // Found parent + if (std::find(gltf_skin.mJoints.begin(), gltf_skin.mJoints.end(), joint_node_index) != gltf_skin.mJoints.end()) + { + // parent is a joint - recursively combine transform + // assumes that matrix is already valid + return buildGltfRestMatrix(static_cast<S32>(i), gltf_skin) * node.mMatrix; + } + } + } + // Should we return armature or stop earlier? + return node.mMatrix; +} + +glm::mat4 LLGLTFLoader::buildGltfRestMatrix(S32 joint_node_index, const joints_data_map_t& joint_data) const +{ + // This is inefficient since we are recalculating some joints multiple times over + // Todo: cache it? + + if (joint_node_index < 0 || joint_node_index >= static_cast<S32>(mGLTFAsset.mNodes.size())) + { + return glm::mat4(1.0f); + } + + auto& data = joint_data.at(joint_node_index); + + if (data.mParentNodeIdx >=0) + { + return buildGltfRestMatrix(data.mParentNodeIdx, joint_data) * data.mGltfMatrix; + } + // Should we return armature or stop earlier? + return data.mGltfMatrix; +} + +// This function computes the transformation matrix needed to convert from GLTF skeleton space +// to viewer skeleton space for a specific joint + +glm::mat4 LLGLTFLoader::computeGltfToViewerSkeletonTransform(const joints_data_map_t& joints_data_map, S32 gltf_node_index, const std::string& joint_name) const +{ + const JointNodeData& node_data = joints_data_map.at(gltf_node_index); + if (!node_data.mIsOverrideValid) + { + // For now assume they are identical and return an identity (for ease of debuging) + return glm::mat4(1.0f); + } + + // Get the GLTF joint's rest pose (in GLTF coordinate system) + const glm::mat4 &gltf_joint_rest_pose = node_data.mGltfRestMatrix; + glm::mat4 rest_pose = coord_system_rotation * gltf_joint_rest_pose; + + LL_INFOS("GLTF_DEBUG") << "rest matrix for joint " << joint_name << ": "; + + LLMatrix4 transform(glm::value_ptr(rest_pose)); + + LL_CONT << transform << LL_ENDL; + + // Compute transformation from GLTF space to viewer space + // This assumes both skeletons are in rest pose initially + return node_data.mOverrideRestMatrix * glm::inverse(rest_pose); +} + +bool LLGLTFLoader::checkForXYrotation(const LL::GLTF::Skin& gltf_skin, S32 joint_idx, S32 bind_indx) +{ + glm::mat4 gltf_joint_rest = buildGltfRestMatrix(joint_idx, gltf_skin); + glm::mat4 test_mat = glm::inverse(gltf_joint_rest) * gltf_skin.mInverseBindMatricesData[bind_indx]; + // Normally for shoulders it should be something close to + // {1,0,0,0;0,-1,0,0;0,0,-1,0;0,0,0,1} + // rotated one will look like + // {0,0,0,-1;1,0,0,0;0,-1,0,0;0,0,0,1} + // Todo: This is a cheap hack, + // figure out how rotation is supposed to work + return abs(test_mat[0][0]) < 0.5 && abs(test_mat[1][1]) < 0.5 && abs(test_mat[2][2]) < 0.5; +} + +void LLGLTFLoader::checkForXYrotation(const LL::GLTF::Skin& gltf_skin) +{ + // HACK: figure out model's rotation from shoulders' matrix. + // This is wrong on many levels: + // Too limited (only models that have shoulders), + // Will not work well with things that emulate 3 hands in some manner + // Only supports xy 90 degree rotation + // Todo: figure out how to find skeleton's orientation Correctly + // when model is rotated at a triangle level + constexpr char right_shoulder_str[] = "mShoulderRight"; + constexpr char left_shoulder_str[] = "mShoulderLeft"; + + S32 size = (S32)gltf_skin.mJoints.size(); + S32 joints_found = 0; + for (S32 i= 0; i < size; i++) + { + S32 joint = gltf_skin.mJoints[i]; + auto joint_node = mGLTFAsset.mNodes[joint]; + + // todo: we are doing this search thing everywhere, + // just pre-translate every joint + JointMap::iterator found = mJointMap.find(joint_node.mName); + if (found == mJointMap.end()) + { + // unsupported joint + continue; + } + if (found->second == right_shoulder_str || found->second == left_shoulder_str) + { + if (checkForXYrotation(gltf_skin, joint, i)) + { + joints_found++; + } + else + { + return; + } + } + } + + if (joints_found == 2) + { + // Both joints in a weird position/rotation, assume rotated model + mApplyXYRotation = true; + } +} + +std::string LLGLTFLoader::extractTextureToTempFile(S32 textureIndex, const std::string& texture_type) +{ + if (textureIndex < 0 || textureIndex >= mGLTFAsset.mTextures.size()) + return ""; + + S32 sourceIndex = mGLTFAsset.mTextures[textureIndex].mSource; + if (sourceIndex < 0 || sourceIndex >= mGLTFAsset.mImages.size()) + return ""; + + LL::GLTF::Image& image = mGLTFAsset.mImages[sourceIndex]; + + // Handle URI-based textures + if (!image.mUri.empty()) + { + return image.mUri; // Return URI directly + } + + // Handle embedded textures + if (image.mBufferView >= 0) + { + if (image.mBufferView < mGLTFAsset.mBufferViews.size()) + { + const LL::GLTF::BufferView& buffer_view = mGLTFAsset.mBufferViews[image.mBufferView]; + if (buffer_view.mBuffer < mGLTFAsset.mBuffers.size()) + { + const LL::GLTF::Buffer& buffer = mGLTFAsset.mBuffers[buffer_view.mBuffer]; + + if (buffer_view.mByteOffset + buffer_view.mByteLength <= buffer.mData.size()) + { + // Extract image data + const U8* data_ptr = &buffer.mData[buffer_view.mByteOffset]; + U32 data_size = buffer_view.mByteLength; + + // Determine the file extension + std::string extension = ".png"; // Default + if (!image.mMimeType.empty()) + { + if (image.mMimeType == "image/jpeg") + extension = ".jpg"; + else if (image.mMimeType == "image/png") + extension = ".png"; + } + else if (data_size >= 4) + { + if (data_ptr[0] == 0xFF && data_ptr[1] == 0xD8) + extension = ".jpg"; // JPEG magic bytes + else if (data_ptr[0] == 0x89 && data_ptr[1] == 0x50 && data_ptr[2] == 0x4E && data_ptr[3] == 0x47) + extension = ".png"; // PNG magic bytes + } + + // Create a temporary file + std::string temp_dir = gDirUtilp->getTempDir(); + std::string temp_filename = temp_dir + gDirUtilp->getDirDelimiter() + + "gltf_embedded_" + texture_type + "_" + std::to_string(sourceIndex) + extension; + + // Write the image data to the temporary file + std::ofstream temp_file(temp_filename, std::ios::binary); + if (temp_file.is_open()) + { + temp_file.write(reinterpret_cast<const char*>(data_ptr), data_size); + temp_file.close(); + + LL_INFOS("GLTF_IMPORT") << "Extracted embedded " << texture_type << " texture to: " << temp_filename << LL_ENDL; + return temp_filename; + } + else + { + LL_WARNS("GLTF_IMPORT") << "Failed to create temporary file for " << texture_type << " texture: " << temp_filename << LL_ENDL; + + LLSD args; + args["Message"] = "FailedToCreateTempFile"; + args["TEXTURE_INDEX"] = sourceIndex; + args["TEXTURE_TYPE"] = texture_type; + args["TEMP_FILE"] = temp_filename; + mWarningsArray.append(args); + } + } + } + } + } + + return ""; +} + +void LLGLTFLoader::notifyUnsupportedExtension(bool unsupported) +{ + std::vector<std::string> extensions = unsupported ? mGLTFAsset.mUnsupportedExtensions : mGLTFAsset.mIgnoredExtensions; + if (extensions.size() > 0) + { + LLSD args; + args["Message"] = unsupported ? "UnsupportedExtension" : "IgnoredExtension"; + std::string del; + std::string ext; + for (auto& extension : extensions) + { + ext += del; + ext += extension; + del = ","; + } + args["EXT"] = ext; + mWarningsArray.append(args); + } +} + |